【视频】大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了

大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了

敖 丙 CSDN认证博客专家 CSDN签约作者 算法工程师 B站网红UP
微信搜一搜【敖丙】关注这个文绉绉的程序员,关注后回复【资料】有我准备的一线大厂面试资料和简历模板。
已标记关键词 清除标记
相关推荐
<p> <b><span style="font-size:14px;"></span><span style="font-size:14px;background-color:#FFE500;">【Java面试宝典】</span></b><br /> <span style="font-size:14px;">1、68讲视频课,500道大厂Java常见面试题+100个Java面试技巧与答题公式+10万字核心知识解析+授课老师1对1面试指导+无限次回放</span><br /> <span style="font-size:14px;">2、这门课程基于胡书敏老师8Java面试经验,调研近百家互联网公司及面试官的问题打造而成,从筛选简历和面试官角度,给出能帮助候选人能面试成功的面试技巧。</span><br /> <span style="font-size:14px;">3、通过学习这门课程,你能系统掌握Java核心、数据库、Java框架、分布式组件、Java简历准备、面试实战技巧等面试必考知识点。</span><br /> <span style="font-size:14px;">4、知识点+项目经验案例,每一个都能做为面试的作品展现。</span><br /> <span style="font-size:14px;">5、本课程已经在线下的培训课程中经过实际检验,老师每次培训结束后,都能帮助同学们运用面试技巧,成功找到更好的工作。</span><br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><b>【超人气讲师】</b></span><br /> <span style="font-size:14px;">胡书敏 | 10大厂工作经验,8Java面试官经验,5线下Java职业培训经验,5架构师经验</span><br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><b>【报名须知】</b></span><br /> <span style="font-size:14px;">上课模式是什么?</span><br /> <span style="font-size:14px;">课程采取录播模式,课程永久有效,可无限次观看</span><br /> <span style="font-size:14px;">课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化</span><br /> <br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><strong>如何开始学习?</strong></span><br /> <span style="font-size:14px;">PC端:报名成功后可以直接进入课程学习</span><br /> <span style="font-size:14px;">移动端:<span style="font-family:Helvetica;font-size:14px;background-color:#FFFFFF;">CSDN 学院APP(注意不是CSDN APP哦)</span></span> </p>
【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区
©️2020 CSDN 皮肤主题: 终极编程指南 设计师:CSDN官方博客 返回首页